48,568 research outputs found

    Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions

    Full text link
    Magnetic lateral multilayers have been fabricated on weak perpendicular magnetic anisotropy amorphous Nd-Co films in order to perform a systematic study on the conditions for controlled nucleation of topological defects within their magnetic stripe domain pattern. A lateral thickness modulation of period ww is defined on the nanostructured samples that, in turn, induces a lateral modulation of both magnetic stripe domain periods λ\lambda and average in-plane magnetization component MinplaneM_{inplane}. Depending on lateral multilayer period and in-plane applied field, thin and thick regions switch independently during in-plane magnetization reversal and domain walls are created within the in-plane magnetization configuration coupled to variable angle grain boundaries and disclinations within the magnetic stripe domain patterns. This process is mainly driven by the competition between rotatable anisotropy (that couples the magnetic stripe pattern to in-plane magnetization) and in-plane shape anisotropy induced by the periodic thickness modulation. However, as the structural period ww becomes comparable to magnetic stripe period λ\lambda, the nucleation of topological defects at the interfaces between thin and thick regions is hindered by a size effect and stripe domains in the different thickness regions become strongly coupled.Comment: 10 pages, 7 figures, submitted to Physical Review

    Sketch-based Influence Maximization and Computation: Scaling up with Guarantees

    Full text link
    Propagation of contagion through networks is a fundamental process. It is used to model the spread of information, influence, or a viral infection. Diffusion patterns can be specified by a probabilistic model, such as Independent Cascade (IC), or captured by a set of representative traces. Basic computational problems in the study of diffusion are influence queries (determining the potency of a specified seed set of nodes) and Influence Maximization (identifying the most influential seed set of a given size). Answering each influence query involves many edge traversals, and does not scale when there are many queries on very large graphs. The gold standard for Influence Maximization is the greedy algorithm, which iteratively adds to the seed set a node maximizing the marginal gain in influence. Greedy has a guaranteed approximation ratio of at least (1-1/e) and actually produces a sequence of nodes, with each prefix having approximation guarantee with respect to the same-size optimum. Since Greedy does not scale well beyond a few million edges, for larger inputs one must currently use either heuristics or alternative algorithms designed for a pre-specified small seed set size. We develop a novel sketch-based design for influence computation. Our greedy Sketch-based Influence Maximization (SKIM) algorithm scales to graphs with billions of edges, with one to two orders of magnitude speedup over the best greedy methods. It still has a guaranteed approximation ratio, and in practice its quality nearly matches that of exact greedy. We also present influence oracles, which use linear-time preprocessing to generate a small sketch for each node, allowing the influence of any seed set to be quickly answered from the sketches of its nodes.Comment: 10 pages, 5 figures. Appeared at the 23rd Conference on Information and Knowledge Management (CIKM 2014) in Shanghai, Chin

    The properties of the stellar populations in ULIRGs I: sample, data and spectral synthesis modelling

    Get PDF
    We present deep long-slit optical spectra for a sample of 36 Ultraluminous Infrared Galaxies (ULIRGs), taken with the William Herschel Telescope (WHT) on La Palma with the aim of investigating the star formation histories and testing evolutionary scenarios for such objects. Here we present the sample, the analysis techniques and a general overview of the properties of the stellar populations. Spectral synthesis modelling has been used in order to estimate the ages of the stellar populations found in the diffuse light sampled by the spectra in both the nuclear and extended regions of the target galaxies. We find that adequate fits can be obtained using combinations of young stellar populations (YSPs,t_YSP<=2 Gyr), with ages divided into two groups: very young stellar populations (VYSPs, t_VYSP <=100 Myr) and intermediate-young stellar populations (IYSPs, 0.1 < t_IYSP <= 2 Gyr). Our results show that YSPs are present at all locations of the galaxies covered by our slit positions, with the exception of the northern nuclear region of the ULIRG IRAS 23327+2913. Furthermore, VYSPs are presents in at least 85% of the 133 extraction apertures used for this study. Old stellar populations (OSPs, t_{OSP} > 2 Gyr) do not make a major contribution to the optical light in the majority of the apertures extracted. In fact they are essential for fitting the spectra in only 5% (7) of the extracted apertures. The estimated total masses for the YSPs (VYSPs+IYSPs) are in the range 0.18 x 10^{10} <= M_YSP <= 50 x 10^{10} Msun. We have also estimated the bolometric luminosities associated with the stellar populations detected at optical wavelengths, finding that they fall in the range 0.07 x 10^{12} < L_bol < 2.2 x 10^{12} Lsun. In addition, we find that reddening is significant at all locations in the galaxies.Comment: accepted for publication in MNRA

    Emergent Nesting of the Fermi Surface from Local-Moment Description of Iron-Pnictide High-Tc Superconductors

    Get PDF
    We uncover the low-energy spectrum of a t-J model for electrons on a square lattice of spin-1 iron atoms with 3dxz and 3dyz orbital character by applying Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of one hole roaming over a 4 x 4 x 2 lattice. Hopping matrix elements are set to produce hole bands centered at zero two-dimensional (2D) momentum in the free-electron limit. Holes can propagate coherently in the t-J model below a threshold Hund coupling when long-range antiferromagnetic order across the d+ = 3d(x+iy)z and d- = 3d(x-iy)z orbitals is established by magnetic frustration that is off-diagonal in the orbital indices. This leads to two hole-pocket Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate spin-density wave (cSDW) that exists above the threshold Hund coupling results in emergent Fermi surface pockets about cSDW momenta at a quantum critical point (QCP). This motivates the introduction of a new Gutzwiller wavefunction for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta indicates that the dispersion of the nested band of one-particle states that emerges is electron-type. Increasing Hund coupling past the QCP can push the hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy level, in agreement with recent determinations of the electronic structure of mono-layer iron-selenide superconductors.Comment: 41 pages, 12 figures, published versio

    Spatial analysis of storm depths from an Arizona raingage network

    Get PDF
    Eight years of summer rainstorm observations are analyzed by a dense network of 93 raingages operated by the U.S. Department of Agriculture, Agricultural Research Service, in the 150 km Walnut Gulch experimental catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon-to-noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storm days, the gage depths are interpolated onto a dense grid and the resulting random field analyzed to obtain moments, isohyetal plots, spatial correlation function, variance function, and the spatial distribution of storm depth

    Proving strong magnetic fields near to the central black hole in the quasar PG0043+039 via cyclotron lines

    Full text link
    The optical luminous quasar PG0043+039 has not been detected before in deep X-ray observations indicating the most extreme optical-to-X-ray slope index αox{\alpha}_{ox} of all quasars. This study aims to detect PG0043+039 in a deep X-ray exposure. Furthermore, we wanted to check out whether this object shows specific spectral properties in other frequency bands. We took deep X-ray (XMM-Newton), far-ultraviolet (HST), and optical (HET, SALT telescopes) spectra of PG0043+039 simultaneously in July 2013. We just detected PG0043+039 in our deep X-ray exposure. The steep αox=−2.37±0.05{\alpha}_{ox} = -2.37 {\pm} 0.05 gradient is consistent with an unusual steep gradient Fν∼ναF_{\nu} {\sim} {\nu}^{\alpha} with α=−2.67±0.02{\alpha} = -2.67 {\pm} 0.02 seen in the UV/far-UV continuum. The optical/UV continuum flux has a clear maximum near 2500 {\AA}. The UV spectrum is very peculiar because it shows broad humps in addition to known emission lines. A modeling of these observed humps with cyclotron lines can explain their wavelength positions, their relative distances, and their relative intensities. We derive plasma temperatures of T ∼{\sim} 3keV and magnetic field strengths of B ∼{\sim} 2 ×108{\times} 10^8 G for the line-emitting regions close to the black hole.Comment: 4 pages, 3 figures, Astronomy & Astrophysics in pres

    Confinement of Spin and Charge in High-Temperature Superconductors

    Full text link
    By exploiting the internal gauge-invariance intrinsic to a spin-charge separated electron, we show that such degrees of freedom must be confined in two-dimensional superconductors experiencing strong inter-electron repulsion. We also demonstrate that incipient confinement in the normal state can prevent chiral spin-fluctuations from destroying the cross-over between strange and psuedo-gap regimes in under-doped high-temperature superconductors. Last, we suggest that the negative Hall anomaly observed in these materials is connected with this confinement effect.Comment: 12 pages, 1 postscript figure, to appear in PRB (RC), May 199
    • …
    corecore